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What we know: Observational data
I Current plate motion from GPS

and magnetic anomalies
I Plate deformation obtained

from dense GPS networks
I Average viscosity in regions

affected by post-glacial rebound
I Topography indicating normal

traction at earth’s surface
Plate motion (Credit: Pearson Prentice Hall, Inc.)

Additional knowledge contributing to mantle rheology:
I Location and geometry of plates, plate boundaries, and subducting

slabs (from seismicity)
I Images of present-day earth structure (by correlating seismic wave

speed with temperature)
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Earth’s mantle modeling via nonlinear rheology
Nonlinear constitutive relationship / rheology due to:

I Strain rate weakening exponent n ≥ 1 (ε̇ii(u) is 2nd invariant of strain rate)
I Yield strength τyield > 0 causing plastic yielding in lithosphere

Additionally, strong heterogeneity in the linear system is introduced by:
I Exponential temperature dependence a(T ) (Arrhenius relationship)
I Plate decoupling factor 0 < w(x) ≤ 1 with orders-of-magnitude contrasts

µ(T , ε̇ii(u)) := max
(
µmin ,min

(
τyield

2ε̇ii(u) , w(x) min
(
µmax , a(T ) ε̇ii(u) 1

n−1
)))

µmax µmin plate decoupling

strain ratestrain rate
weakeningweakening

plasticplastic
yieldingyielding
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What we would like to learn: Rheological parameters
Globally constant parameters affecting viscosity and nonlinearity:

I Global scaling factor of the upper mantle viscosity (0–660 km depth)
I Stress exponent controlling severity of strain rate weakening
I Yield strength governing plastic yielding phenomena

Local, spatially varying parameters:
I Coupling strength / energy dissipation between plates

(Credit: Alisic)
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Mantle flow governed by incompressible Stokes equations
Nonlinear incompressible Stokes PDE (w/ free-slip & no-normal flow BC):

−∇ ·
[
µ(u) (∇u +∇uT)

]
+∇p = f viscosity µ, RHS forcing f
−∇ · u = 0 seek: velocity u, pressure p

Linearization (with Newton), then discretization (with inf-sup stable F.E.):[
A BT

B 0

] [
ũ
p̃

]
=
[
−r1
−r2

]

I High-order finite element shape functions
I Inf-sup stable velocity–pressure pairings: Qk × Pdisc

k−1 with order k ≥ 2
I Locally mass conservative due to discontinuous, modal pressure
I Non-conforming hexahedral meshes with “hanging nodes”
I Adaptive mesh refinement resolving fine-scale features of mantle
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Severe challenges for parallel scalable solvers
. . . arising in Earth’s mantle convection:

I Severe nonlinearity, heterogeneity, and
anisotropy imposed by Earth’s rheology

I Sharp viscosity gradients in narrow regions
(6 orders of magnitude drop in ∼5 km)

I Wide range of spatial scales and highly
localized features, e.g., plate boundaries of size
O(1 km) influence plate motion at continental
scales of O(1000 km)

I Adaptive mesh refinement is essential
I High-order finite elements Qk × Pdisc

k−1, order
k ≥ 2, with local mass conservation; yields a
difficult to deal with discontinuous, modal
pressure approximation

Viscosity (colors) and
locally refined mesh.
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w-BFBT: Robust inverse Schur complement approximation[
A BT

B 0

] [
Ã BT

0 S̃

]−1 [˜̃u
˜̃p

]
=
[
−r1
−r2

]
Ã−1 ≈ A−1

S̃−1 ≈ (BA−1BT)−1

S̃−1
w-BFBT :=

(
BC−1

w BT
)−1

︸ ︷︷ ︸
Poisson solve

(
BC−1

w AD−1
w BT

) (
BD−1

w BT
)−1

︸ ︷︷ ︸
Poisson solve

Choice of diagonal weighting matrices Cw = Dw := M̃u(w) is critical for
efficacy & robustness. [Rudi, Stadler, Ghattas, 2017] proposes w = √µ.
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Ã−1 ≈ A−1

S̃−1 ≈ (BA−1BT)−1

S̃−1
w-BFBT :=

(
BC−1

w BT
)−1

︸ ︷︷ ︸
Poisson solve

(
BC−1

w AD−1
w BT

) (
BD−1

w BT
)−1

︸ ︷︷ ︸
Poisson solve

Choice of diagonal weighting matrices Cw = Dw := M̃u(w) is critical for
efficacy & robustness. [Rudi, Stadler, Ghattas, 2017] proposes w = √µ.

0 4 8 12 16 20 24 28
0

200

400

600

Problem difficulty (number of sinkers) →

N
um

be
ro

f
GM

RE
S
ite

ra
tio

ns Mp(1/µ)
w-BFBT



“Extreme-Scale Implicit Solver for Earth’s Mantle Convection” by Johann Rudi

w-BFBT: Robust inverse Schur complement approximation[
A BT

B 0

] [
Ã BT

0 S̃

]−1 [˜̃u
˜̃p

]
=
[
−r1
−r2

]
Ã−1 ≈ A−1 → MG V-cycle
S̃−1 ≈ (BA−1BT)−1

S̃−1
w-BFBT :=

(
BC−1

w BT
)−1

︸ ︷︷ ︸
→ MG V-cycle

(
BC−1

w AD−1
w BT

) (
BD−1

w BT
)−1

︸ ︷︷ ︸
→ MG V-cycle

Choice of diagonal weighting matrices Cw = Dw := M̃u(w) is critical for
efficacy & robustness. [Rudi, Stadler, Ghattas, 2017] proposes w = √µ.
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Comparison of Schur complement preconditioners

w-BFBT combines robust convergence of diag(A)-BFBT [May, Moresi, 2008]
with improved algorithmic scalability when order k increases.
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Spectrum comparisons of preconditioned Schur matrices
2D Stokes problem discretized with Pbubble

2 × Pdisc
1 finite elements on a uniform

triangular mesh consisting of 512 triangles (FEniCS library).

I As the problem difficulty (i.e., sinker counts) increases, the spreading of
small eigenvalues for Mp(1/µ) becomes more severe, which is
disadvantageous for Krylov solver convergence.

I w-BFBT remains largely unaffected by increased difficulty, which results in
convergence that is robust w.r.t. viscosity variations.
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Spectral equivalence for w-BFBT
Theorem: [Rudi, Stadler, Ghattas, 2017] Assume an infinite-dimensional
w-BFBT approximation of the Schur complement:

S̃w-BFBT := K ∗w(Bw A wB∗)−1Kw , K ∗w := BwB∗, w ≡ µ−
1
2

Then S̃w-BFBT is equivalent to S = BA−1B∗,(
S̃w-BFBT q , q

)
≤ (Sq , q) ≤ Cw-BFBT

(
S̃w-BFBT q , q

)
for all q,

with a constant based on weighted Poincaré–Friedrichs’ and Korn’s ineq.

Cw-BFBT :=
(
1 + 1

4 ‖∇µ‖
2
L∞(Ω)d

)(
C 2

P,µ + 1
)
C 2

K ,µ

Remark: For a constant viscosity µ ≡ 1 the equivalence relationship holds
with classical Poincaré–Friedrichs’ and Korn’s inequalities.
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HMG: Hybrid spectral–geometric–algebraic multigrid
HMG hierarchy
pressure space

spectral
p-coarsening
geometric

h-coarsening
algebraic
coars.

discont. modal

continuous nodal
high-order F.E.

trilinear F.E.
decreasing #cores

#cores < 1000
small MPI communicator

single core

I Multigrid hierarchy of nested meshes is generated from an adaptively refined
octree-based mesh via spectral–geometric coarsening

I Re-discretization of PDEs at coarser levels
I Parallel repartitioning of coarser meshes for load-balancing (crucial for AMR);

sufficiently coarse meshes occupy only subsets of cores
I Coarse grid solver: AMG (from PETSc) invoked on small core counts
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Geometric coarsening: Repartitioning & core-thinning
I Parallel repartitioning (p4est library) of adapted meshes for load balancing
I Core-thinning to avoid excessive communication in multigrid cycle
I Reduced MPI communicators containing only non-empty cores
I Ensure coarsening across core boundaries: Partition families of

octants/elements on same core for next coarsening sweep

36 38 36 38 9 14 27 17 35 0 32 0

coarsen,
2:1 bal. partition

Colors depict different processor cores, numbers indicate element count on each core.
[Sundar, Biros, Burstedde, Rudi, Ghattas, Stadler, 2012]
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HMG V-cycle: Smoothing & interpolation/restriction
HMG V-cycle

p-MG

h-MG

AMG

direct

modal to nodal
projection
high-order

L2-projection

linear
L2-projection

linear
projection

I High-order L2-projection onto coarser levels; restriction & interpolation are
adjoints of each other in L2-sense

I Chebyshev accelerated Jacobi smoother (Cheb. from PETSc) with tensorized
matrix-free high-order stiffness apply; assembly of high-order diagonal only

I Efficacy, i.e., error reduction, of HMG V-cycles is independent of core count
I No collective communication needed in spectral–geometric MG cycles
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Problem setup for scalability tests on Lonestar 5

Discretization parameters to test parallel scalability:
I Finite element order k = 2 is fixed (Qk × Pdisc

1 )
I Vary mesh refinement level ` for weak scalability

Multigrid parameters for Ã−1 and
(
BC−1

w BT)−1 are:
I 1 HMG V-cycle with 3+3 smoothing
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Weak scalability for HMG+w-BFBT on Lonestar 5
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Ideal weak scalability
Solve [DOF/(sec/iter)]
Setup [DOF/sec]

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes,
each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
[Rudi, Stadler, Ghattas, 2017]
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Strong scalability for HMG+w-BFBT on Lonestar 5
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c] Ideal speedup

Solve 24×OMP1
Solve 6×OMP4
Solve 2×OMP12
Solve 1×OMP24

Performed on TACC’s Lonestar 5: Cray XC40 with 1252 compute nodes,
each contains 2 Intel Haswell 12-core processors and 64 GBytes of memory.
[Rudi, Stadler, Ghattas, 2017]
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Parallel scalability: Global mantle convection problem setup
Discretization parameters to test parallel scalability:

I Finite element order k = 2 is fixed (Qk × Pdisc
k−1)

I Increase max mesh refinement `max

I Refinement down to ∼75m local resolution
I Resulting mesh has 9 levels of refinement

Multigrid parameters for elliptic blocks A and K:
I 1 HMG V-cycle with 3+3 smoothing

Hardware and target system:
I IBM Blue Gene/Q architecture
I Lawrence Livermore National Lab’s Sequoia
I 96 racks resulting in 98,304 nodes and

1,572,864 cores
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Extreme weak scalability on Sequoia supercomputer
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[Rudi, Malossi, Isaac, Stadler, Gurnis, Staar, Ineichen, Bekas, Curioni, Ghattas, 2015]



“Extreme-Scale Implicit Solver for Earth’s Mantle Convection” by Johann Rudi

Outline

Earth’s mantle convection: The driving application & solver challenges

Weighted BFBT preconditioner for the Schur complement

Hybrid spectral–geometric–algebraic multigrid

Numerical results: Parallel scalability of the linear solver

Inexact Newton–Krylov method & primal-dual linearization



“Extreme-Scale Implicit Solver for Earth’s Mantle Convection” by Johann Rudi

Inexact Newton–Krylov method

Compute Newton update (ũ, p̃) via inexact solution: [w/ ∇su := 1
2 (∇u +∇uT) ]

−∇s · (2µ′∇sũ) +∇p̃ = −r1

∇ · ũ = −r2
with µ′ = µ I + ε̇ii

∂µ

∂ε̇ii

∇su ⊗∇su
‖∇su‖2

F

Original Newton linearization vs. primal-dual: Introduce T = ∇su/ ‖∇su‖F

H1,1(u)ũ := −∇s ·

(
2µ
(

I− θ∇su ⊗∇su
‖∇su‖2

F

)
∇sũ

)
, 0 ≤ θ < 1,

H1,1(u,T)ũ := −∇s ·
(

2µ
(

I− θ∇su ⊗T
‖∇su‖F

)
∇sũ

)
, ‖T‖F ≤ 1.

No additional DOF or solves, since dual variable is computed explicitly in each
Newton step: T ← T + T̃
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Primal-dual Newton for mantle’s yielding rheology
Fast & stable nonlinear convergence with primal-dual Newton linearization:

Yielding level Original Newton Primal-dual Newton
volume ` #Newton #backtr. #Newton #backtr.

∼45% 4 33 20 10 0
∼45% 5 36 25 12 0
∼45% 6 57 49 13 0

∼65% 4 29 21 18 10
∼65% 5 37 26 17 9
∼65% 6 48 39 20 9

∼90% 4 35 25 19 11
∼90% 5 40 32 21 11
∼90% 6 32 21 23 11

I Number of Newton steps (#Newton)
I Number of steps with backtracking line search (#backtr.)
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Interpretation of primal-dual Newton
Observations:

I Primal-dual linearization only requires to modify the Hessian.
I No additional solve required, hence the computational cost per Newton step

is negligible.
I Nonlinear convergence in the presence of yielding rheology is significantly

improved.
I As mesh elements are refined, stable nonlinear convergence is maintained.

Interpretation:
I Primal-dual linearization acts as a regularization/preconditioner far from

solution while enabling super-linear Newton convergence close to solution.
I Regularization has a large magnitude far from solution and goes to zero as

solution is assumed.
I Regularization can be interpreted as “model error dependent,” where

“model” refers to the 2nd-order approximation used by Newton.
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Summary of completed research and outlook
Summary:

I Hybrid spectral–geometric–algebraic
multigrid (based on p4est library;
extended by a coarsening correction to
enable coarsening across core
boundaries).

I Weighted BFBT preconditioner for the
for the Schur complement; scalable
HMG-based BFBT algorithms,
heterogeneity-robust weighting of BFBT
and theoretical foundation.

I Inexact Newton–Krylov with
grid-continuation for highly nonlinear
mantle rheology.

I Parallel scalability of solvers to 1.6
million cores (collaboration with IBM
Research – Zurich).

References:
I Rudi, Stadler, and Ghattas, SISC, 2017.
I Rudi, Stadler, and Ghattas, 14th Copper

Mountain Conference on Iterative Methods
(winner of student paper competition,
unpublished competition paper), 2016.

I Rudi, Malossi, Isaac, Stadler, Gurnis, Staar,
Ineichen, Bekas, Curioni, and Ghattas,
Proceedings of SC15 (winner of Gordon Bell
Prize), 2015.

I Sundar, Biros, Burstedde, Rudi, Ghattas, and
Stadler, Proceedings of SC12, 2012.

Outlook:
I Mathematically rigorous derivation for primal-dual Newton.
I Bayesian inversion for rheological parameters of global mantle convection models.
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